Scientific Measurements \&

 ConversionsLength, Mass, Volume, Density, Temperature, and Time

Length

-Length measures the distance from end to end on an object; height and width are variations on length.
Standard (S.I.) Unit: meter (m)

- Common units for this course: centimeter (cm)
- Tool: ruler, meter stick
- How to read a metric ruler:

Mass
Mass measures the amount of matter (particles) in an object. It is similar to weight but does not change as gravity changes. For example, if you go to
the moon, you will weigh less but your mass is that same (you didn't lose body part!!
Standard (S.I.) Unit: kilogram (kg)

- Common units for this course: gram (g)
-Tool: triple beam balance, electronic balance

- Mass $=100+10+4.3=114.3$

Volume of a Liquid

- standard (5.1.) Unit: liter (L)

Common units for this course: milliliter (m)

- Tool: graduated cylinder

Step 1: Determine the scale of the cylinder

- Subtract the valueso of any two labelled graduations and divide by the number of
 $1 / 10 \mathrm{~mL}$, or simply 0.1 mL .
Step 2: Determine the volume of liquid in the cylinder

Volume of a Regular Solid

- Volume measures the amount of space an object occupies. - Standard (S.I.) Unit: cubic meter (\mathbf{m}^{3})

Common units for this course: cubic centimeter (cm^{3})
Tool: ruler and calculator
How to calculate the volume of a regular solid:
Step 1: Measure the length, width, and height
Lep . Measure the length, width, and height of the
using the nit for all three (cm, m, etc.).)
Step 2: Use the following formula: $L \times W \times H=$ Volume
Step 2: Use the following formula: $L \times W \times H=$ volume
Step 3. Check the units-it must be written as ase the cube of the same
unit as the length, width, and height ($\mathrm{cm}^{3}, \mathrm{~m}^{3}$, tetc.). e same
\qquad $1=5 \mathrm{~cm}$

Volume of an Irregular Solid
-Volume measures the amount of space an object occupies. Irregular solids do not have a rectangular instead is called Water Displacement.
Standard (S.I.) Unit: cubic meter (m^{3})
-Common units for this course: cubic centimeter ($\left(\mathrm{cm}^{3}\right)$
-Tool: graduated cylinder and calculator

- How to use Water Displacement

Add the object to a graduated cylinder of water.
Calculate the rise in the water level. The units should be cm^{3} since the object is a solid $\left(1 \mathrm{~mL}=1 \mathrm{~cm}^{3}\right)$.

Temperature

-Temperature measures the energy contained within a substance.

- Standard (S.I.) Unit: Kelvin Abbreviation: K
- Common units for this course: Degrees Celcius Abbreviation: ${ }^{\circ} \mathrm{C}$ - Tool: thermometer
- How to read a thermometer
- Step 1: Determine the scale of the thermometer

Subtract the values of any two labelled graduations and divide by the number of intervals between them. Here $60-50=10$ then divided by $5=2$. So each 2. Determine reading a ruler. (Here it is $24^{\circ} \mathrm{C}$)

Density

- Density measures the ratio of mass to volume for an object. Density must be calculated; it cannot be measured directly; density is the same for all parts of a single object.
- Liquid Standard (S.I.) Unit: grams per milliiter Abbreviation: g / mL
- Solid Standard (S.I.) Unit: grams per cubic centimeter Abbreviation: $\mathrm{g} / \mathrm{cm}^{3}$ Tool: calculator
- How to calculate density: Density $=$ mass \div volume or $D=\frac{m}{\mathbf{V}}$

Example: If a block has a mass of 5 g and a volume of $10 \mathrm{~cm}^{3}$, then density is $5 \mathrm{~g} \div 10 \mathrm{~cm}^{3}$ or $0.5 \mathrm{~g} / \mathrm{cm}^{3}$

Density Problems

1. What is the density of a piece of wood that has a mass of 25.0 grams and a volume of $29.4 \mathrm{~cm}^{3}$?
2. Mercury metal is poured into a graduated cylinder that holds exactly 22.5 mL of the liquid. The mercury used to fill the cylinder weighs 306.0 g From this information, calculate the density of mercury.

Conversions Practice

- Convert the following using Dimensional Analysis. SHOW ALL WORK.
- 45 inches $=$ \qquad $\mathrm{cm}=$ \qquad m
-60,000 sec $=$ \qquad $\min =$ \qquad _days CONVERSION FACTORS:
- $120 \mathrm{lbs}=$ \qquad $\mathrm{kg}=$ \qquad _g

